Ruthenium-Catalyzed Rearrangement of *ent*-14-(Benzoyloxy)-15,16-epoxybeyerane Diterpenes

Andrés García-Granados,* José Dueñas, Antonio Guerrero, Antonio Martínez, and Andrés Parra

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain

Received June 20, 1995[®]

Rearrangements of *ent*-18-acetoxy-14 α -(benzoyloxy)-15 α , 16 α -epoxybeyerane and *ent*-18-acetoxy-14 β -(benzoyloxy)-15 α , 16 α -epoxybeyerane, catalyzed by ruthenium acetylacetonate, were carried out. With the 14-*endo*-(benzoyloxy) compound, *ent*-18-acetoxy-14 α -(benzoyloxy)beyera-9, 15-diene, *ent*-18-acetoxy-15 α -(benzoyloxy)-14 α -hydroxykaur-16-ene, *ent*-18-acetoxy-15 α -(benzoyloxy)-14 α -hydroxy-(16S)-kaur-11-ene, and *ent*-18-acetoxy-14 α -hydroxy-(16R)-kauran-15-one were isolated. However, rearrangement of the 14-*exo*-(benzoyloxy) compound gave *ent*-18-acetoxy-15 β -(benzoyloxy)-14 α -hydroxykaur-16-ene, *ent*-18-acetoxy-15 β -(benzoyloxy)-14 α -hydroxykaur-16-ene, *ent*-18-acetoxy-15 β -(benzoyloxy)-14 α -hydroxy-(16S)-kaur-16-ene, *ent*-18-acetoxy-15 β -(benzoyloxy)-14 α -hydroxy-(16S)-kaur-16-ene, *ent*-18-acetoxy-15 β -(benzoyloxy)-14 α -hydroxy-(16S)-kaur-11-ene, *ent*-18-acetoxy-15 β -(benzoyloxy)-12 α -chloro-15 α -hydroxy-(16S)-kaurane, and *ent*-18-acetoxy-14 β -(benzoyloxy)-12 α -chloro-15 α -hydroxybeyerane. The influence of the C-14 benzoyloxy substituent and its arrangement are discussed by comparison with other rearrangement processes reported previously.

Introduction

Rearrangements of tetracyclic diterpenoids have been extensively studied and were carried out on epoxy compounds¹⁻⁹ or thiocarbonates¹⁰ or through solvolytic reactions.¹¹⁻¹⁸ Recent papers^{8,9} have demonstrated that oxygenated functions near the epoxy group participate in the rearrangement process. Moreover, stereochemistry of this function may also influence the course of the reaction.^{8,9} In previous papers, ruthenium-catalyzed rearrangements of epoxybeyeranes with 14- or 12hydroxy and 14- or 12-acetoxy groups were reported.^{8,9} In this paper, we investigate the possible participation of a benzoyloxy group in the intermediate structures formed in the rearrangement process and in the yields of products obtained.

Results and Discussion

Saponification of *ent*-14 β -acetoxy-18-hydroxybeyer-15ene (**1**), a natural product isolated from *Sideritis pusilla*,^{19,20} gave tartesidiol (**2**),⁸ which was acetylated to obtain 18-acetoxy derivative **3**.⁸ Product **3** was oxidized with Jones' reagent, yielding ketone **4**, which was reduced with NaBH₄ to give *ent*-18-acetoxy-14 α -hydroxybeyer-15-ene (**5**).⁸ Treatment of product **5** with benzoyl chloride gave an *ent*-14 α -(benzoyloxy) derivative, which was epoxidized with *m*-CPBA to obtain *ent*-18-acetoxy-14 α -(benzoyloxy)-15 α ,16 α -epoxybeyerane (**6**). Product **3** was treated with benzoyl chloride and afterwards with *m*-CPBA to give *ent*-18-acetoxy-14 β -(benzoyloxy)-15 α ,16 α -epoxybeyerane (**7**).

The reaction of *ent*-14 β -(benzoyloxy)-15 α , 16 α -epoxy derivative 6 with ruthenium acetylacetonate in a sealed tube at 140 °C for 7 h gave rise to a mixture of products 8 (5%), 9 (19%), 10 (8%), and 11 (15%) (Scheme 1). These rearranged products were similar to those obtained previously in which the starting material was the ent-14α-acetoxy-15α,16α-epoxy derivative.⁸ Spectroscopic data of products 8-10 were very similar to those of the acetoxy derivatives isolated in previous work, with the expected differences produced by the benzoyloxy group at C-14 or C-15 in the ent-beyerene or *ent*-kaurene skeletons, respectively. Formation of these rearranged products from the benzoyloxy epoxy compound 6 has been explained through a process similar to that described for the acetoxy derivatives⁸ (Scheme 2). As can be seen, the proposed mechanism assumed different pathways involving hydride shifts and/or the participation of a 14-endo-(benzoyloxy) group.

Treatment of epoxy compound **7** with ruthenium acetylacetonate under the above conditions gave **12** (4%), **13** (7%), **14** (10%), **15** (6%), **16** (5%), and **17** (16%) (Scheme 3). In this case, the rearrangement process gave rise to three new rearranged compounds (products **13**, **16**, and **17**). Moreover, other products differed only in the substituent at C-14 and C-15, now a benzoyloxy group instead of an acetoxy group.

Product **12** was similar to a product obtained from an epoxy acetoxy compound⁸ and had an *ent*-15 β -(benzoyloxy)-14 α -hydroxykaur-16-ene skeleton. ¹H and ¹³C NMR spectroscopic data of **12** confirmed this structure, and its formation was justified by the mechanism shown in Scheme 4. An opening of the epoxy group

^{*} To whom correspondence should be addressed. Tel/Fax: 34-58-243364. E-mail: agarcia@goliat.ugr.es.

Abstract published in Advance ACS Abstracts, January 1, 1996.

toward C-15 was assumed, and a concerted $12(13)\rightarrow 16$ rearrangement could occur. Thus, the *ent*-kaurene skeleton with a carbocation at the original C-13 was formed (path a in Scheme 4). The participation of an *ent*-14 β -(benzoyloxy) group gave an intermediate B, which by loss of a C-17 proton yielded product **12** (path b in Scheme 4).

The ¹H NMR data for rearranged product 13 showed signals similar to those of the previous *ent*-kaurene 12. Thus, there were *exo*-methylene signals at δ 4.96 (1H, d, J = 2.0 Hz) and at δ 5.03 (1H, d, J = 2.0 Hz). The signals for geminal protons to oxygenated functions on C-14 (δ 4.21, 1H, br d) and C-15 (δ 5.53, 1H, dd, $J_1 =$ 2.0 Hz, $J_2 = 4.0$ Hz) can be also observed. The structure of 13 was established using the C/H correlation and COSY experiments. These data suggested the existence of an ent-atis-16-ene skeleton functionalized at C-14 and C-15 using published data as a reference for this unfunctionalized skeleton.²¹ Thus, the signals at δ 5.53 (H-15) and δ 4.21 (H-14) were correlated with the signals at 81.8 ppm (C-15) and 66.7 ppm (C-14) in the correlation C/H spectrum, respectively. Moreover, the H-17 signals were assigned to an exo-methylene group at δ 5.03 and δ 4.96 in the COSY spectrum. The H-14 signal was coupled to the signal at δ 2.32 (H-13), which was coupled to another at δ 2.50 (H-12) in the COSY spectrum. Furthermore, the γ , β , and α effects of the C-14 and C-15 substituents on the carbons of the C and D rings were taken into account to assign the chemical shifts in the ¹³C NMR spectrum of product 13. Finally, oxidation of product **13** gave ketone **18**. Several ¹H and ¹³C mono- and bidimensional NMR experiments were conducted on 13, and these data were in agreement with published data for similar structures.²² Therefore, product 18 was considered to be the 14-oxo derivative of **13**, which was *ent*-18-acetoxy-15 β -(benzoyloxy)-14 α hydroxyatis-16-ene. The formation of rearranged product 13 was explained according to path c in Scheme 4. Starting from intermediate A, intermediate C was obtained by a $12 \rightarrow 16$ hydride shift. The participation of an *ent*-14 α -(benzoyloxy) group is possible by the formation of an 1,3-dioxolan-2-ilio cation, and an 16-(13) \rightarrow 12 rearrangement could thus occur (path d in Scheme 4), leading to intermediate D. The process

ended with five-membered ring opening and loss of an H-17 to give the *ent*-atis-16-ene structure **13**.

Product 14, also obtained from this rearrangement, presented a molecular peak of m/z 502 that indicated a molecular formula of $C_{29}H_{39}O_5Cl$. This product had an ent-beyerane skeleton, since its NMR spectrum showed three methyl singlet signals (δ 1.00, 0.93, and 0.79) and an AB quartet from the C-18 acetoxymethylene group. In addition, the *ent*-14 β -(benzoyloxy) group also remained at this position, since the signal of its geminal proton appeared at δ 4.91 (1H, d, J = 1 Hz). Moreover, the signals of protons geminal to functions on C-15 and C-16 were apparent at δ 4.41 (1H, m) and δ 4.14 (1H, d, J = 3.9 Hz), respectively. These signals were similar to those observed for a previously described ent-16 β chloro-15a-hydroxy derivative obtained from trans epoxy opening.⁹ The ¹³C NMR data of 14 were also compatible with the mentioned substitution for similar compounds.^{8,9} Product **14** was probably formed from intermediate A by dorsal attack of a chlorine ion on C-16 (path e in Scheme 4). Such chlorine entry was observed previously⁹ and probably originated from the solvent (CHCl₃) in which the rearrangement process was conducted.

Rearranged product **15** had an *ent*-kaur-11-ene skeleton and was similar to a product obtained from the acetoxy epoxy compound rearranged previously.⁸ Its formation was started from intermediate B by a $12\rightarrow16$ hydride shift (path f in Scheme 4) so that a carbonium ion was formed at C-12 (intermediate E). This cationic structure may undergo the loss of a C-11 proton with the formation of a C-11/C-12 double bond (path g in Scheme 4).

Product **16** also differed from derivatives previously obtained.⁸ Its molecular ion peak (m/z 502) and the successive fragmentations observed indicated that a chlorinated compound was again formed, with a molecular formula of C₂₉H₃₉O₅Cl. The ¹H NMR spectrum of **16** presented two singlet methyls (δ 0.97 and 0.79) and one doublet methyl (δ 1.10, J = 8.0 Hz); in addition, a double quartet was observed at δ 2.73 (1H, dq, $J_1 = J_2$ = 8.0 Hz). These signals suggested that **16** had an *ent*kaurane structure. Several bidimensional NMR experiments were done to establish the structure of this compound. At δ 5.22 there was a signal (1H, d, J = 8.0Hz) which was coupled with the signal at δ 2.73 (H-16); therefore, the δ 5.22 signal was due to the proton at C-15 geminal to a benzoyloxy group. Moreover, the signal of the *ent*-14 β proton geminal to hydroxyl group (1H, s) was located at δ 4.14. In addition, at 4.25 ppm we noted the signal of a proton coupled with three other protons (1H, ddd, $J_1 = 12.0$ Hz, $J_2 = 6.2$ Hz, $J_3 =$ 2.3 Hz). Since there was a chlorine in the molecule, this signal must represent its geminal proton. From the COSY spectrum of **16** we deduced that the signal at δ 4.25 (*ent*-12 β -H) was correlated with three proton signals at δ 2.32, 2.13, and 1.65. Therefore, a CHCHXCH₂ group must be present, an arrangement that is only possible if the chlorine atom is situated at C-11 or C-12. The C/H correlation spectrum of 16 was also studied and the ¹³C NMR chemical shifts were analyzed, assuming both possibilities. On the basis of these data and the ¹³C NMR chemical shifts for related *ent*-kaurane compounds,^{8,23} we conclude that product **16** was *ent*-18-acetoxy-15 β -(benzoyloxy)-12 α -chloro-14 α -hy-

Scheme 3. Rearrangement of Product 7

droxykaurane. The formation of 16 could be explained by an attack by chlorine ion on the intermediate E (path

h in Scheme 4) only on the *ent*- α face because of marked steric hinderance on the *ent*- β face.

The last product isolated from this rearangement (17) also had a molecular formula of $C_{29}H_{39}O_5Cl$ (*m*/*z* 502). Product 17 had an *ent*-beyerane skeleton, since three methyl singlet signals at δ 1.12, 1.00, and 0.80 were observed in the ¹H spectrum. At δ 5.42 we noted a singlet signal corresponding to a proton geminal to the benzoyloxy group on C-14. Moreover, at 4.10 ppm (1H, narrow doublet, J = 1.7 Hz) and 4.35 ppm (1H, broad multiplet) we found the signals of two protons geminal to the hydroxy group and to the chlorine atom. The ¹³C NMR data were not compatible with products formed from a trans or cis epoxy group opening. Various 2Dexperiments (COSY, C/H, and INADEQUATE) were done to unequivocally establish the structure of compound 17. An INADEQUATE spectrum study allowed us to determine the connectivity of all carbons of the molecule. An ent-beyerane skeleton was assumed for compound 17, and its INADEQUATE spectrum showed that C-15 was oxygenated and that it was connected to a quarternary (C-8) and a methylenic carbon atom (C-16). Futhermore, C-16 was joined to a primary carbon (C-17), to a methynic carbon (C-12), and to the carbon which supported the benzoyloxy group (C-14). NOE effects were observed between H-17, H-12, and H-14; there was also a NOE effect between H-15 and H-20. Therefore, compound 17 is assumed to have an axial chlorine atom at C-12 and *ent*-15 α -hydroxyl group at

C-15. We therefore conclude that **17** had a structure of *ent*-18-acetoxy-14 β -(benzoyloxy)-12 α -chloro-15 α -hydroxybeyerane. The formation of compound **17** from **7** could easily be justified via intermediate C by an attack by chlorine ion at C-12 (path i in Scheme 4).

The results reported here indicate that rearrangement of the 14-(benzoyloxy) epoxy compounds **6** and **7** instead of the 14-acetoxy epoxy compounds⁸ does not lead to a significant improvement in yield. However, in the case of *ent*-14 β -(benzoyloxy) derivative **7**, the resulting products varied considerably. The *ent*-atis-16-ene product **13** is interesting because it can be used as a precursor for *ent*-14-oxo atis-16-enes. These *ent*atisenes possess interesting biological properties and have been isolated from tropical plants.²⁴ In addition, the chlorinated compounds obtained allowed us to postulate a mechanism of formation of the products by capture of intermediates from the rearrangement process.

Experimental Section

General Experimental Procedures. NMR spectra were done in CDCl_3 in a Bruker AM-300 Bruker and in a ARX-400. The assignments of ¹³C chemical shifts were done with the aid of distortionless enhancement by polarization transfer (DEPT) using a flip angle of 135°. 2D-NMR experiments, COSY90, NOESY, direct C/H correlation, and INADEQUATE, were performed with pullprogrs from the Bruker library (COSY90, NOESYST, HXCO, and INAD respectively). A sample of 110 mg of product 17 in 0.5 mL of CDCl₃ in a 5 mM diameter probe was used for INADEQUATE, which was acquired by 512 experiences of 192 scans, with relaxation delay between scans of 2.2 s and refocalization time of 1/4J = 0.0065 s, in a week-end experiment. IR spectra were recorded on a Perkin-Elmer Model 983 G spectrometer or on a Nicolet 20SX FT-IR spectrometer. Mass spectra were determined with CI (methane) in a Hewlett-Packard Model 5988 A spectrometer. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at 20 °C. Silica gel SDS 60 A CC ($40-60 \mu m$) was used for flash chromatography. CH₂Cl₂ or CHCl₃ containing increasing amounts of Me₂CO was used as the eluent. Analytical plates (silica gel, Merck 60 G) were rendered visible by spraying with H₂SO₄/AcOH, followed by heating to 120 °C. Starting material for this work, *ent*-14 β -acetoxy-18-hydroxybeyer-15-ene (1), was isolated from Sideritis pusilla (var.flavovirens).^{19,20}

Saponification of *ent*-14 β -Acetoxy-18-hydroxybeyer-15-ene (1). Seven hundred mg of 1 was dissolved in 25 mL of a MeOH/H₂O solution (30/70) with 5% of KOH. The reaction was maintained at reflux for 6 h, after which time it was neutralized, extracted with CH₂Cl₂, dried with anhydrous Na₂SO₄, and purified by flash chromatography, yielding 600 mg of **2** (98%).⁸

Acetylation of *ent*-14 β ,18-Dihydroxybeyer-15-ene (2). Six hundred mg of 2 was acetylated with Ac₂O/Py (2:4 mL) for 1 h at 0 °C. Purification by flash chromatography provided 110 mg of monoacetylated product 3 (76%).⁸ **Oxidation of** *ent***-18-Acetoxy-14** β **-hydroxybeyer-15-ene (3).** Three hundred mg of **3** was dissolved in acetone (10 mL) and oxidized with Jones' reagent for 30 min at 0 °C. Purification by flash chromatography gave 235 mg of **4** (79%).⁸

Reduction with NaBH₄ of *ent*-18-Acetoxybeyer-15-en-14-one (4). Twenty mg of NaBH₄ was added to a stirred solution of 235 mg of 4 in EtOH (10 mL) at room temperature for 1 h. The reaction mixture was acidified with dilute HCl, extracted with CH_2Cl_2 , dried, and evaporated. Purification by flash chromatography provided 228 mg of 5 (96%).⁸

Benzoylation and Epoxidation of *ent***-18-Acetoxy-14** α **-hydroxybeyer-15-ene (5).** Two hundred twentyeight mg of **5** was treated with benzoyl chloride/Py (1:2 mL). After 12 h at room temperature, the mixture was diluted with H₂O, extracted with CHCl₃, washed with saturated KHSO₄, dried, and evaporated. Purification by flash chromatography gave *ent*-18-acetoxy-14 α -(benzoyloxy)beyer-15-ene. This benzoyloxy derivative was epoxidized with 200 mg of *m*-CPBA in 5 mL of CHCl₃ for 24 h at room temperature. The reaction mixture was then diluted with CHCl₃, washed with aqueous FeSO₄, aqueous NaHCO₃, and water, dried, and concentrated. Purification by flash chromatography provided *ent*-18acetoxy-14 α -(benzoyloxy)-15 α , 16 α -epoxybeyerane (6) (148 mg, 65%).

ent-18-Acetoxy-14a-(benzoyloxy)-15a,16a-epoxy**beyerane (6):** mp 45–47 °C; [α]²⁰_D –41° (*c* 0.5, CHCl₃); IR ν(max) (CHCl₃) 1725, 1270, 1248; ¹H NMR (δ CDCl₃) 8.09-7.45 (5H, PhCOO), 4.66 (1H, s, H-14), 3.81 (1H, Q_{AB}, *J* = 10.9 Hz, H-18), 3.63 (1H, d, *J* = 3.5 Hz, H-15), 3.60 (1H, Q_{AB} , J = 10.9 Hz, H-18), 3.22 (1H, d, J = 3.5Hz, H-16), 1.84 (3H, s, MeCOO), 1.04, 1.01, 0.85 (3H each, s); ¹³C NMR (δ, CDCl₃) 39.3 (C-1), 18.3 (C-2), 35.8 (C-3), 36.5 (C-4), 48.3 (C-5), 19.3 (C-6), 30.1 (C-7), 45.5 (C-8), 50.0 (C-9), 37.2 (C-10), 17.8 (C-11), 29.2 (C-12), 40.8 (C-13), 78.0 (C-14), 55.1 (C-15), 59.0 (C-16), 19.4 (C-17), 73.0 (C-18), 17.6 (C-19), 16.2 (C-20), 20.8 (MeCO), 171.2 (MeCO), 166.2 (PhCOO), 133.2, 130.5, 129.6, 128.6 (*Ph*COO); CIMS (CH₄) m/z 467 [M + 1]⁺ (16), 407 (58), 345 (100), 285 (77). Anal. Calcd for C₂₉H₃₈O₅: C, 74.68; H, 8.15. Found: C, 74.5; H, 8.3.

Benzoylation and Epoxidation of *ent*-**18**-Acetoxy-**14** β -hydroxybeyer-**15**-ene (3). The procedure was the same as that described for the preparation of epoxy benzoyloxy derivative **6**. Thus, product **3** (200 mg) was converted into *ent*-**18**-acetoxy-**14** β -(benzoyloxy)-**15** α , **16** α epoxybeyerane (7) (210 mg, 78%).

ent-18-Acetoxy-14 β -(benzoyloxy)-15 α ,16 α -epoxybeyerane (7): mp 63-65 °C; $[\alpha]^{20}_{D} + 22^{\circ}$ (c 0.5, CHCl₃); IR ν (max) 1728, 1265, 1245; ¹H NMR (δ , CDCl₃) 8.11-7.39 (5H, PhCOO), 4.65 (1H, s, H-14), 3.79 (1H, Q_{AB}, J= 11.0 Hz, H-18), 3.61 (1H, dd, J_1 = 2.9 Hz, J_2 = 1.1 Hz, H-15), 3.61 (1H, Q_{AB}, J = 11.0 Hz, H-18), 3.19 (1H, dd, J_1 = 2.9 Hz, J_2 = 1.3 Hz, H-16), 2.03 (3H, s, MeCOO), 1.04, 0.99, 0.83 (3H each, s); ¹³C NMR (δ , CDCl₃) 39.0 (C-1), 17.8 (C-2), 35.6 (C-3), 36.4 (C-4), 49.3 (C-5), 18.8 (C-6), 27.8 (C-7), 49.1 (C-8), 56.6 (C-9), 37.6 (C-10), 17.8 (C-11), 34.8 (C-12), 44.6 (C-13), 85.2 (C-14), 55.3 (C-15), 59.6 (C-16), 17.7 (C-17), 72.7 (C-18), 16.9 (C-19), 16.1 (C-20), 21.1 (*Me*CO), 171.3 (Me*CO*), 167.2 (Ph*COO*), 132.9, 130.3, 129.9, 128.4 (*Ph*COO); CIMS (CH₄) *m*/*z* 467 [M + 1]⁺ (22), 345 (100), 285 (68). Anal. Calcd for $C_{29}H_{38}O_5$: C, 74.68; H, 8.15. Found: C, 74.8; H, 8.2.

Rearrangement of *ent*-**18**-**Acetoxy**-**14** α -(**benzoy**-**loxy**)-**15** α ,**16** α -**epoxybeyerane (6).** Product **6** (140 mg) was dissolved in CHCl₃ (5 mL) in a sealed tube. Then, 14 mg of ruthenium acetylacetonate was added, and the mixture was heated at 140 °C for 7 h. The solution was concentrated, and after purification and separation by flash chromatography four products were obtained: **8** (7 mg, 5%), **9** (27 mg, 19%), **10** (11 mg, 8%), and **11** (8), (16 mg, 15%).

ent-18-Acetoxy-14a-(benzoyloxy)beyera-9,15-di**ene (8)**: mp syrup; $[\alpha]^{20}_{D} + 35^{\circ}$ (*c* 0.5, CHCl₃); IR *v*-(max) 1724, 1675, 1266; ¹H NMR (δ, CDCl₃) 8.06-7.42 (5H, PhCOO), 6.20 (1H, d, J = 6.1 Hz, H-15), 5.40 (1H, dd, $J_1 = J_2 = 3.5$ Hz, H-11), 5.36 (1H, d, J = 6.1 Hz, H-16), 4.91 (1H, s, H-14), 3.82 (1H, Q_{AB} , J = 11.0 Hz, H-18), 3.49 (1H, Q_{AB}, J=11.0 Hz, H-18), 2.22 (1H, Q_{AB}, J = 2.9 Hz, H-12), 2.16 (1H, Q_{AB}, J = 2.9 Hz, H-12), 1.55 (3H, s, MeCOO), 1.11, 1.02, 0.83 (3H each, s); ¹³C NMR (*d*, CDCl₃) 37.8 (C-1), 18.3 (C-2), 35.7 (C-3), 36.8 (C-4), 44.9 (C-5), 19.3 (C-6), 33.1 (C-7), 49.2 (C-8), 152.1 (C-9), 38.7 (C-10), 116.0 (C-11), 31.6 (C-12), 43.1 (C-13), 83.1 (C-14), 142.1 (C-15), 132.4 (C-16), 22.3 (C-17), 72.2 (C-18), 17.9 (C-19), 25.3 (C-20), 20.3 (MeCO), 171.2 (MeCO), 166.8 (PhCOO), 133.0, 130.7, 129.7, 128.5 (*Ph*COO); CIMS (CH₄) m/z 449 [M + 1]⁺ (6), 329 (100), 327 (10), 269 (23), 267 (8). Anal. Calcd for C₂₉H₃₆O₄: C, 77.68; H, 8.04. Found: C, 77.5; H, 7.9.

ent-18-Acetoxy-15a-(benzoyloxy)-14a-hydroxy**kaur-16-ene (9):** mp 68–70 °C; $[\alpha]^{20}_{D}$ –74° (*c* 0.5, CHCl₃); IR ν (max) 3421, 1729, 1267, 1229; ¹H NMR (δ , CDCl₃) 8.11–7.46 (5H, PhCOO), 5.78 (1H, dd, $J_1 = J_2$ = 2.5 Hz, H-15), 5.13 (1H, br s, H-17), 5.11 (1H, d, J =2.5 Hz, H-17), 4.34 (1H, s, H-14), 3.78 (1H, Q_{AB} , J =10.9 Hz, H-18), 3.64 (1H, Q_{AB}, J = 10.9 Hz, H-18), 2.74 (1H, br s, H-13), 1.94 (3H, s, MeCOO), 1.06, 0.82 (3H each, s); ¹³C NMR (δ, CDCl₃) 40.3 (C-1), 18.1 (C-2), 35.7 (C-3), 36.6 (C-4), 50.8 (C-5), 19.5 (C-6), 29.9 (C-7), 51.7 (C-8), 50.4 (C-9), 39.2 (C-10), 17.8 (C-11), 33.7 (C-12), 49.6 (C-13), 75.2 (C-14), 79.9 (C-15), 151.8 (C-16), 110.0 (C-17), 73.4 (C-18), 18.5 (C-19), 17.5 (C-20), 19.3 (MeCO), 171.4 (MeCO), 166.8 (PhCOO), 133.2, 130.7, 129.9, 128.7 (*Ph*COO); CIMS (CH₄) m/z 467 [M + 1]⁺ (1), 449 (26), 345 (16), 327 (18), 285 (100), 267 (15). Anal. Calcd for C₂₉H₃₈O₅: C, 74.68; H, 8.15. Found: C, 74.8; H, 8.0.

ent-18-Acetoxy-15a-(benzoyloxy)-14a-hydroxy-**16(***S***)-kaur-11-ene (10):** mp 138–40 °C; [α]²⁰_D –133° (c 0.5, CHCl₃): IR v(max) 3515, 1716, 1274, 1237; ¹H NMR (δ, CDCl₃) 8.05–7.42 (5H, PhCOO), 6.09 (1H, ddd, $J_1 = 9.7$ Hz, $J_2 = 7.0$ Hz, $J_3 = 1.7$ Hz, H-12), 5.48 (1H, dd, $J_1 = 9.7$ Hz, $J_2 = 3.6$ Hz, H-11), 4.99 (1H, d, J = 3.6Hz, H-15), 4.47 (1H, br s, H-14), 3.82 (1H, Q_{AB} , J = 10.9Hz, H-18), 3.64 (1H, Q_{AB} , J = 10.9 Hz, H-18), 2.47 (1H, dd, $J_1 = 3.9$ Hz, $J_2 = 1.7$ Hz, H-16), 2.29 (1H, dd, $J_1 =$ 10.5 Hz, $J_2 = 2.4$ Hz, H-13), 2.12 (1H, d, J = 7.1 Hz, H-9), 1.93 (3H, s, MeCOO), 1.35 (d, *J* = 7.4 Hz, 3H-17), 0.98, 0.82 (3H each, s); ¹³C NMR (δ, CDCl₃) 39.8 (C-1), 17.8 (C-2), 35.6 (C-3), 36.5 (C-4), 49.0 (C-5), 19.8 (C-6), 28.0 (C-7), 52.1 (C-8), 49.4 (C-9), 38.4 (C-10), 134.0 (C-11), 125.2 (C-12), 54.3 (C-13), 75.7 (C-14), 90.8 (C-15), 48.3 (C-16), 20.7 (C-17), 73.1 (C-18), 17.7 (C-19), 17.5 (C-20), 21.3 (MeCO), 171.3 (MeCO), 166.7 (PhCOO), 132.9, 131.0, 129.6, 128.5 (PhCOO); CIMS (CH₄) m/z 467 $[M + 1]^+$ (6), 345 (56), 327 (35), 285 (100), 267 (28). Anal.

Calcd for $C_{29}H_{38}O_5$: C, 74.68; H, 8.15. Found: C, 74.8, H, 8.0.

Rearrangement of *ent***-18-Acetoxy-14** β -(**benzoy-loxy**)-**15** α ,**16** α -**epoxybeyerane (7).** Product **7** (837 mg) was dissolved in CHCl₃ (15 mL) in a sealed tube. Then, 80 mg of ruthenium acetylacetonate was added, and the mixture was heated at 140 °C for 7 h. The solution was concentrated, and after purification and separation by flash chromatography six products were obtained: **12** (33 mg, 4%), **13** (58 mg, 7%), **14** (85 mg, 9.5%), **15** (50 mg, 6%), **16** (45 mg, 5%), and **17** (143 mg, 16%).

ent-18-Acetoxy-15β-(benzoyloxy)-14α-hydroxy**kaur-16-ene (12):** mp 127–29 °C; $[\alpha]^{20}_{D}$ +5° (c 0.5, CHCl₃); IR ν(max) 3424, 1712, 1273; ¹H NMR (δ, CDCl₃) 8.00-7.40 (5H, PhCOO), 5.62 (1H, s, H-15), 5.37 (1H, s, H-17), 5.28 (1H, s, H-17), 4.22 (1H, br s, H-14), 3.78 (1H, Q_{AB} , J = 10.9 Hz, H-18), 3.62 (1H, Q_{AB} , J = 10.9Hz, H-18), 2.02 (3H, s, MeCOO), 1.05, 0.81 (3H each, s); ¹³C NMR (δ, CDCl₃) 39.8 (C-1), 17.9 (C-2), 35.6 (C-3), 36.5 (C-4), 49.8 (C-5), 18.8 (C-6), 27.1 (C-7), 53.2 (C-8), 56.7 (C-9), 39.6 (C-10), 18.4 (C-11), 33.1 (C-12), 51.4 (C-13), 76.7 (C-14), 82.7 (C-15), 152.7 (C-16), 114.8 (C-17), 72.8 (C-18), 17.9 (C-19), 17.5 (C-20), 21.2 (MeCO), 171.4 (MeCO), 166.4 (PhCOO), 133.2, 130.2, 129.8, 128.6 (*Ph*COO); CIMS (CH₄) m/z 467 [M + 1]⁺ (1), 449 (7), 345 (14), 327 (15), 285 (100), 267 (16). Anal. Calcd for C₂₉H₃₈O₅: C, 74.68; H, 8.15. Found: C, 74.8; H, 8.1.

ent-18-Acetoxy-15β-(benzoyloxy)-14α-hydroxya**tis-16-ene (13):** mp 58–60 °C; [α]²⁰_D +45° (*c* 1, CHCl₃); ν (max) 3420, 1718, 1269; ¹H NMR (δ , CDCl₃) 8.00–7.40 (5H, PhCOO), 5.53 (1H, dd, $J_1 = 2.0$ Hz, $J_2 = 4.0$ Hz, H-15), 5.03 (1H, d, J = 2.0 Hz, H-17), 4.96 (1H, d, J = 2.0 Hz, H-17), 4.21 (1H, br d, H-14), 3.81 (1H, Q_{AB}, J= 11.0 Hz, H-18), 3.63 (1H, Q_{AB}, J = 11.0 Hz, H-18), 2.50 (1H, m, H-12), 2.05 (3H, s, MeCOO), 0.96, 0.82 (3H each, s); ¹³C NMR (δ, CDCl₃) 39.0 (C-1), 17.7 (C-2), 35.7 (C-3), 36.4 (C-4), 49.8 (C-5), 17.4 (C-6), 29.9 (C-7), 41.8 (C-8), 50.6 (C-9), 37.7 (C-10), 27.0 (C-11), 35.6 (C-12), 40.4 (C-13), 66.7 (C-14), 81.8 (C-15), 149.9 (C-16), 110.9 (C-17), 72.6 (C-18), 17.6 (C-19), 15.1 (C-20), 21.2 (MeCO), 171.4 (MeCO), 166.6 (PhCOO), 133.4, 130.0, 129.6, 128.8 (*Ph*COO); CIMS (CH₄) m/z 467 [M + 1]⁺ (29), 449 (4), 345 (81), 327 (26), 285 (52). Anal. Calcd for C₂₉H₃₈O₅: C, 74.68; H, 8.15. Found: C, 74.4; H, 8.3.

ent-18-Acetoxy-14β-(benzovloxy)-15α-hydroxy-**16** β -chlorobeyerane (14): mp 115–17 °C; $[\alpha]^{20}_{D}$ +17.2° (*c* 0.5, CHCl₃); IR ν(max) 3497, 1718, 1272; ¹H NMR (δ, CDCL₃) 8.00–7.40 (5H, PhCOO), 4.91 (1H, d, J = 1.7Hz, H-14), 4.41 (1H, m, H-15), 4.14 (1H, d, J = 3.9 Hz, H-16), 3.74 (1H, Q_{AB} , J = 11.0 Hz, H-18), 3.60 (1H, Q_{AB} , J = 11.0 Hz, H-18), 2.03 (3H, s, MeCOO), 1.00, 0.93, 0.79 (3H each, s); ¹³C NMR (δ, CDCl₃) 39.0 (C-1), 17.5 (C-2), 35.5 (C-3), 36.3 (C-4), 49.5 (C-5), 18.5 (C-6), 27.7 (C-7), 49.4 (C-8), 55.7 (C-9), 37.9 (C-10), 19.0 (C-11), 33.1 (C-12), 47.0 (C-13), 91.2 (C-14), 80.5 (C-15), 77.0 (C-16), 19.4 (C-17), 72.8 (C-18), 17.8 (C-19), 15.2 (C-20), 21.1 (MeCO), 171.3 (MeCO), 166.0 (PhCOO), 133.3, 129.7, 129.7, 128.6 (*Ph*COO); CIMS (CH₄) m/z 503 [M + 1]⁺ (2), 487 (3), 485 (7), 383 (3), 381 (9), 365 (23), 363 (65),323 (33), 321 (100), 305 (37), 303 (98). Anal. Calcd for C₂₉H₃₈O₅Cl: C, 69.32; H, 7.57. Found: C, 69.2; H, 7.7.

ent-18-Acetoxy-15β-(benzoyloxy)-14α-hydroxy-16(*S*)-kaur-11-ene (15): mp 135–37 °C; [α]²⁰_D –12.5° (*c* 1, CHCl₃); IR ν(max) 3502, 3012, 1715, 1279; ¹H NMR (δ, CDCl_3) 8.10–7.40 (5H, PhCOO), 6.02 (1H, ddd, $J_1 =$ 9.7 Hz, $J_2 = 7.1$ Hz, $J_3 = 1.6$ Hz, H-12), 5.33 (1H, dd, J_1 = 9.7 Hz, J_2 = 3.6 Hz, H-11), 5.21 (1H, d, J = 8.0 Hz, H-15), 4.35 (1H, s, H-14), 3.78 (1H, Q_{AB} , J = 11.0 Hz, H-18), 3.65 (1H, Q_{AB} , J = 11.0 Hz, H-18), 2.69 (1H, dq, $J_1 = J_2 = 8.0$ Hz, H-16), 2.02 (3H, s, MeCOO), 1.07 (d J = 8.0 Hz, 3H-17), 0.96, 0.81 (3H each, s); ¹³C NMR (d, CDCl₃) 39.3 (C-1), 17.8 (C-2), 35.5 (C-3), 36.5 (C-4), 49.7 (C-5), 19.1 (C-6), 27.0 (C-7), 52.0 (C-8), 62.3 (C-9), 38.8 (C-10), 134.4 (C-11), 124.2 (C-12), 49.0 (C-13), 74.6 (C-14), 86.0 (C-15), 46.8 (C-16), 16.7 (C-17), 72.9 (C-18), 17.7 (C-19), 17.6 (C-20), 21.2 (MeCO), 171.5 (MeCO), 166.3 (Ph*COO*), 133.0, 130.4, 129.7, 128.6 (*Ph*COO); CIMS (CH₄) m/z 467 [M + 1]⁺ (1), 345 (15), 285 (100), 267 (56). Anal. Calcd for C₂₉H₃₈O₅: C, 74.68; H, 8.15. Found: C, 74.9; H, 7.9.

ent-18-Acetoxy-15 β -(benzoyloxy)-12 α -chloro-14 α hydroxykaurane (16): mp 156–58 °C; [α]²⁰_D +11.0° $(c 0.5, CHCl_3)$; IR $\nu(max)$ 3508, 1714, 1279; ¹H NMR (δ , $CDCl_3$) 8.03-7.40 (5H, PhCOO), 5.22 (1H, d, J = 8.0Hz, H-15), 4.25 (1H, ddd, $J_1 = 12.0$ Hz, $J_2 = 6.2$ Hz, J_3 = 2.3 Hz, H-12), 4.14 (1H, s, H-14), 3.77 (1H, Q_{AB}, J =11.0 Hz, H-18), 3.60 (1H, Q_{AB} , J = 11.0 Hz, H-18), 2.01 (3H, s, MeCOO), 1.10 (d, J = 8.0 Hz, 3H-17), 0.97, 0.79 (3H each, s); ¹³C NMR (δ , CDCl₃) 39.8 (C-1), 17.9 (C-2), 35.4 (C-3), 36.4 (C-4), 49.4 (C-5), 18.9 (C-6), 27.1 (C-7), 53.1 (C-8), 58.4 (C-9), 39.2 (C-10), 30.1 (C-11), 60.8 (C-12), 56.0 (C-13), 76.8 (C-14), 84.4 (C-15), 35.0 (C-16), 17.2 (C-17), 72.6 (C-18), 18.4 (C-19), 17.5 (C-20), 21.1 (MeCO), 171.3 (MeCO), 166.0 (PhCOO), 133.2, 129.7, 128.6, 128.5, (*Ph*COO); CIMS (CH₄) m/z 503 [M + 1]⁺ (1), 487 (2), 485 (5), 468 (4), 365 (4), 363 (10), 323 (33),321 (100), 305 (12), 303 (33). Anal. Calcd for C₂₉H₃₈O₅-Cl: C, 69.32; H, 7.57. Found: C, 69.2; H, 7.7.

ent-18-Acetoxy-14\beta-(benzoyloxy)-12\alpha-chloro-15\alphahydroxybeyerane (17): mp 129–31 °C; [α]²⁰_D +3.8° (c 1, CHCl₃); IR ν (max) 3526, 1718, 1275; ¹H NMR (δ , CDCl₃) 8.00-7.40 (5H, PhCOO), 5.42 (1H, s, H-14), 4.35 (1H, m, H-15), 4.10 (1H, d, J = 1.7 Hz, H-12), 3.78 (1H, H-12), 3.78 (1H Q_{AB} , J = 11.0 Hz, H-18), 3.61 (1H, Q_{AB} , J = 11.0 Hz, H-18), 2.07 (3H, s, MeCOO), 1.12, 1.00, 0.80 (3H each, s); ¹³C NMR (δ, CDCl₃) 38.9 (C-1), 17.5 (C-2), 35.3 (C-3), 36.4 (C-4), 49.4 (C-5), 18.7 (C-6), 27.5 (C-7), 52.4 (C-8), 49.6 (C-9), 37.4 (C-10), 28.8 (C-11), 68.2 (C-12), 48.5 (C-13), 88.0 (C-14), 72.1 (C-15), 49.4 (C-16), 20.2 (C-17), 72.5 (C-18), 17.8 (C-19), 16.1 (C-20), 21.2 (MeCO), 171.4 (MeCO), 165.8 (PhCOO), 133.3, 129.9, 129.6, 128.7 (*Ph*COO); CIMS (CH₄) m/z 503 [M + 1]⁺ (6), 487 (4), 485 (11), 383 (3), 381 (9), 365 (6), 363 (18), 323 (33), 321 (100). Anal. Calcd for C₂₉H₃₈O₅Cl: C, 69.32; H, 7.57. Found: C, 69.1; H, 7.6.

Oxidation of *ent*-**18**-**Acetoxy**-**15** β -(**benzoyloxy**)-**14** α -**hydroxyatis**-**16**-**ene (13)**. Product **13** (50 mg) was oxidized with Jones' reagent for 6 h as described above, and after flash chromatography *ent*-18-acetoxy-15 β -(benzoyloxy)atis-16-en-14-one (**18**) was obtained (40 mg, 86%).

ent-18-Acetoxy-15 β -(benzoyloxy)atis-16-en-14one (18): mp 66–68 °C; $[\alpha]^{20}_{D}$ –64.0° (*c* 0.5, CHCl₃); IR ν (max) 2950, 1733, 1240; ¹H NMR (δ , CDCl₃) 7.95– 7.38 (5H, PhCOO), 5.62 (1H, s, H-14), 5.19 (1H, s, H-17), 5.15 (1H, s, H-17), 3.80 (1H, Q_{AB}, J = 11.0 Hz, H-18), 3.60 (1H, Q_{AB}, J = 11.0 Hz, H-18), 2.84 (1H, m, H-12), 2.04 (3H, s, MeCOO), 0.80, 0.77 (3H each, s); ¹³C NMR (δ , CDCl₃) 38.4 (C-1), 17.4 (C-2), 35.7 (C-3), 36.3 (C-4), 48.9 (C-5), 18.6 (C-6), 28.0 (C-7), 51.8 (C-8), 48.9 (C-9), 38.0 (C-10), 28.6 (C-11), 37.2 (C-12), 44.2 (C-13), 213.2 (C-14), 79.1 (C-15), 147.8 (C-16), 114.0 (C-17), 72.6 (C-18), 17.8 (C-19), 14.2 (C-20), 21.2 (*Me*CO), 171.3 (Me*CO*), 166.3 (Ph*COO*), 133.3, 129.9, 129.8, 128.5 (*Ph*COO); CIMS (CH₄) *m*/*z* 465 [M + 1]⁺ (5), 343 (100), 283 (80). Anal. Calcd for $C_{29}H_{36}O_5$: C, 75.00; H, 7.76. Found: C, 74.8; H, 8.0.

Acknowledgment. This work was supported by a grant from the Dirección General de Investigación Científica y Técnica. We thank Ms. Karen Shashok for revising the English usage in the manuscript.

References and Notes

- (1) Kapadi, A. H.; Dev, S. Tetrahedron Lett. 1977, 18, 1255.
- (2) Hanson, J. R. *Tetrahedron* **1967**, *23*, 793.
- (3) Yoshikoshi, A.; Kitadani, M.; Kitahara, Y. *Tetrahedron* **1967**, *23*, 1175.
- (4) Buchanam, J. C. St.; Davis, B. R. Chem. Commun. 1967, 1142.
- (5) Hanson, J. R. *Tetrahedron* 1970, *26*, 2711.
 (6) Gunn, P. A.; McCrindle, R.; Roy, R. G. J. Chem. Soc. C 1971, 1018
- Murray, R. D.; Mills, R. W.; McAlees, A. J.; McCrindle, R. *Tetrahedron* 1974, *30*, 3399.
- (8) García-Granados, A.; Martínez, A.; Onorato, M. E. J. Org. Chem. 1987, 52, 606.

- (9) Dueñas, J.; García-Granados, A.; Martínez, A.; Onorato, M. E.; Parra, A. J. Org. Chem. 1995, 60, 2170.
- (10) García-Granados, A.; Parra, A. An. Quim., Ser. C 1983, 78C, 291.
- (11) Appleton, R. A.; J. McAlees, A.; McCormick, A.; McCrindle, R.; Murray, R. D. J. Chem. Soc. C 1966, 2319.
- (12) Appleton, R. A.; Gunn, P. A.; McCrindle, R. J. Chem. Soc. C 1970, 1148.
- (13) Coates, R. M.; Bertram, E. F. J. Org. Chem. 1971, 36, 3722.
- (14) McAlees, A. J.; McCrindle, R. J. Chem. Soc., Perkin Trans. 1 1975, 861.
- (15) McAlees, A. J.; McCrindle, R.; Murphy, S. T. J. Chem. Soc., Perkin Trans. 1 1975, 1641.
- (16) Cheng, Y. X.; Zhou, W. S.; Wu, H. M. Tetrahedron 1993, 49, 97.
- (17) García-Granados, A.; Parra, A. Tetrahedron 1991, 47, 9103.
- (18) Dueñas, J.; García-Granados, A.; Martínez, A.; Parra, A. *Tetrahedron* **1994**, *50*, 10761.
- (19) García-Granados, A.; Parra, A.; Peña, A.; Socorro, O. *An. Quim., Ser. C* **1984**, *80C*, 175.
- (20) García-Granados, A.; Martínez, A.; Onorato, M. E.; Socorro, O. Phytochemistry 1984, 23, 607.
- (21) Rodríguez, B.; Alemany, A.; Pinar, M. *Tetrahedron Lett.* **1978**, *33*, 3069.
- (22) Cambie, R. C.; Lal, A. R.; Rutledge, P. S.; Woodgate, P. D.; Rickard, C. E. F.; Clark, G. R. *Tetrahedron Lett.* **1989**, *30*, 3205.
- (23) Pelletier, S. W.; Mody, N. V.; Desai, H. K.; J. Org. Chem. 1981, 46, 1840.
- (24) Gustafson, K. R. Tetrahedron 1991, 47, 4547.

NP960039A